Feedback regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2 gene expression by Sirt1 and FoxO1.

نویسندگان

  • Dan Wei
  • Rongya Tao
  • Yao Zhang
  • Morris F White
  • X Charlie Dong
چکیده

Protein deacetylase Sirt1 has been implicated in the regulation of hepatic gluconeogenesis; however, the mechanisms are not fully understood. To further elucidate how Sirt1 regulates gluconeogenesis, we took a loss-of-function approach by deleting the coding DNA sequence for the catalytic domain of the Sirt1 gene in the liver of a wild-type mouse (LKO(Sirt)¹) or a genetic diabetic mouse in which hepatic insulin receptor substrates 1 and 2 are deleted (DKO(Irs½)). Whereas LKO(Sirt)¹ mice exhibited normal levels of fasting and fed blood glucose, inactivation of Sirt1 in DKO(Irs½) mice (TKO(Irs½:Sirt)¹) reduced blood glucose levels and moderately improved systemic glucose tolerance. Pyruvate tolerance was also significantly improved in TKO(Irs½:Sirt)¹ mice, suggesting that Sirt1 promotes hepatic gluconeogenesis in this diabetic mouse model. To understand why inactivation of hepatic Sirt1 does not alter blood glucose levels in the wild-type background, we searched for a potential cause and found that expression of small heterodimer partner (SHP, encoded by the Nr0b2 gene), an orphan nuclear receptor, which has been shown to suppress the activity of forkhead transcription factor FoxO1, was decreased in the liver of LKO(Sirt)¹ mice. Furthermore, our luciferase reporter assays and chromatin immunoprecipitation analysis revealed that the Nr0b2 gene is a target of FoxO1, which is also regulated by Sirt1. After the gene is upregulated, Nr0b2 can feed back and repress FoxO1- and Sirt1-activated G6pc and Pdk4 gene expression. Thus, our results suggest that Sirt1 can both positively and negatively regulate hepatic gluconeogenesis through FoxO1 and Nr0b2 and keep this physiological process in control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP.

OBJECTIVE Metformin is an antidiabetic drug commonly used to treat type 2 diabetes. The aim of the study was to determine whether metformin regulates hepatic gluconeogenesis through the orphan nuclear receptor small heterodimer partner (SHP; NR0B2). RESEARCH DESIGN AND METHODS We assessed the regulation of hepatic SHP gene expression by Northern blot analysis with metformin and adenovirus con...

متن کامل

Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase dependent regulation of the orphan nuclear rec

Objective: Metformin is an antidiabetic drug which is commonly used to treat type 2 diabetes. The aim of the study was to determine whether metformin regulates hepatic gluconeogenesis through the orphan nuclear receptor small heterodimer partner (SHP; NR0B2). Research Design and Methods: We assessed the regulation of hepatic SHP gene expression by Northern blot analysis with metformin and adeno...

متن کامل

Sodium Meta-Arsenite Ameliorates Hyperglycemia in Obese Diabetic db/db Mice by Inhibition of Hepatic Gluconeogenesis

Sodium meta-arsenite (SA) is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg(-1) body weight/day) for 8 weeks. We examined hemoglobin A1c (HbA1c), blood glucose levels...

متن کامل

Orphan nuclear receptor small heterodimer partner negatively regulates growth hormone-mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation.

Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent r...

متن کامل

Metformin Inhibits Growth Hormone–Mediated Hepatic PDK4 Gene Expression Through Induction of Orphan Nuclear Receptor Small Heterodimer Partner

Growth hormone (GH) is a counter-regulatory hormone that plays an important role in preventing hypoglycemia during fasting. Because inhibition of the pyruvate dehydrogenase complex (PDC) by pyruvate dehydrogenase kinase 4 (PDK4) conserves substrates for gluconeogenesis, we tested whether GH increases PDK4 expression in liver by a signaling pathway sensitive to inhibition by metformin. The effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 300 2  شماره 

صفحات  -

تاریخ انتشار 2011